Conjugated Azoalkenes. Part 12. ${ }^{1}$ Synthesis of New 1-Amino-3-cyanopyrrole, 1,2-Diaminopyrrole and Pyrrolo[2,3-b]pyrrole Derivatives by Reaction of Some Conjugated Azoalkenes with Activated Nitriles

Orazio A. Attanasi, ${ }^{a}$ Lucia De Crescentini, ${ }^{a}$ Stefania Santeusanio, ${ }^{a}$ Franco Serra-Zanetti, Alexander McKillop ${ }^{b}$ and Zhiyuan Liao ${ }^{c}$
${ }^{a}$ a stituto di Chimica Organica della Facolta' di Scienze, Universita' di Urbino, Piazza della Repubblica 13, 61029 Urbino, Italy
${ }^{\text {b }}$ School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
${ }^{\text {c D D Department of Chemical Engineering, Beijing Institute of Technology, } 100081 \text { Beijing, China }}$

The reactions of a variety of conjugated azoalkenes with β-cyano ketones or β-cyano amides have been studied and, depending on the nature and the molar ratios of the reagents, new 1 -amino-3cyanopyrroles, 1,2-diaminopyrroles and 1,3a,6,6a-tetrahydropyrrolo[2,3-b]pyrroles can be obtained in good yields and under mild reaction conditions.

We have previously shown that conjugated azoalkenes are excellent substrates for the synthesis of several 1-aminopyrrole, 1-amino-2-hydroxy-2,3-dihydropyrrole, and pyrrolo[2,3-b]pyrrole derivatives by reaction with compounds containing active methylene or methine groups. ${ }^{2-4}$ These products are provided with versatile functional groups capable of further elaboration. In particular, in a previous part of this series, ${ }^{4}$ we reported that reactions of certain conjugated azoalkenes with malononitrile gave 1,2-diamino-3-cyanopyrroles and 3a-cyanopyrrolo[2,3$b]$ pyrroles, while the reaction of the same reagents with β cyanoesters gave mainly 3a-alkoxycarbonylpyrrolo[2,3-b]pyrroles. When nitriles with active methylene groups add to conjugated azoalkenes the unconjugated 1,4 -adduct is formed. This can then react by one or both of two possible reaction pathways: ring closure of the 1,4 -adduct to the iminopyrroline intermediate which readily tautomerizes to the 1,2 -diaminopyrrole, and/or a further addition reaction of the 1,4 -adduct to the conjugated azoalkene to give a bis-adduct which undergoes double ring closure to afford the linearly condensed system.

Result and Discussion

In connection with our continuing interest in the chemistry of conjugated azoalkenes and in the synthesis of new pyrrole and pyrrolo $[2,3-b]$ pyrrole derivatives, we now describe the synthesis of new 1 -amino-3-cyanopyrroles and 3a-carbonylpyrrolo $[2,3-b]$ pyrroles by the reaction between conjugated azoalkenes and β-cyano ketones (Scheme 1) as well as the preparation of previously unknown 1,2-diamino-3-aminocarbonylpyrroles and 3a-aminocarbonylpyrrolo[2,3-b]pyrroles by the reaction of the same reagents with 1-cyanoacetylpiperidine (Scheme 2). ${ }^{5}$

The approach employed initially was based on the reaction of the azoalkenes 1a-f with an equimolar amount of 4,4-dimethyl-3-oxopentanenitrile 2a in THF (tetrahydrofuran) as a solvent. Under these conditions, the reactions led to two products, which were identified as the 1,4 -adducts $\mathbf{3 a - f}$, and the pyr-rolo[2,3-b]pyrroles $5 \mathbf{a}-\mathrm{d}$. The 1,4 -adducts $\mathbf{3 a - f}$ can be isolated, purified, and characterized, and can be utilized for the preparation of 1-amino-3-cyanopyrroles $\mathbf{4 a - f}$, in the presence of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{CCD})$, according to our previous investigations on this matter. ${ }^{2,3 a}$ When a 2:1 ratio 1a-d: 2a was employed, the yields of the pyrrolo[2,3-b]pyrroles 5a-d were considerably increased.
The reactions between equimolar amounts of the azoalkenes 1a-f and benzoylacetonitrile $\mathbf{2 b}$ in the presence of CCD, in

THF as a solvent, gave the 1 -amino-3-cyanopyrroles $\mathbf{4 g}-1$ directly in high yields, together with pyrrolo $[2,3-b]$ pyrroles $\mathbf{5 e}$ h as minor secondary products. When the benzoylacetonitrile $\mathbf{2 b}$ was added to the azoalkenes $\mathbf{1 c}-\mathbf{f}$ in the ratio of $1: 2$ an improvement in the yield of the pyrrolo[2,3-b]pyrroles $5 \mathbf{e}-\mathrm{h}$ was observed (Table 1).
The reaction of azoalkenes 1a-f with 1-cyanoacetylpiperidine 2 c in the ratio $1: 1$ was investigated next. This led to the $1,4-$ adducts $\mathbf{3 g}-I$ in very good yields, together with traces of pyrrolo $[2,3-b]$ pyrroles $5 \mathbf{5 i - j}$. The best yields in the subsequent cyclizations of the 1,4 -adducts were obtained by treating them with NaH , which gave the 1,2 -diamino-3-aminocarbonylpyrroles $\mathbf{4 m - r}$ by ring closure to the cyano group. Use of a $2: 1$ ratio of 1 c or 1 d to 2 c increased considerably the yields of the pyrrolo [2,3-b]pyrroles 5i-j (Table 2).
From the above brief description it can be seen that conjugated azoalkenes react with β-cyano ketones by two different pathways. The simple 1,4 -adduct initially formed may cyclize via the ketone to give a hydroxypyrroline derivative, which is readily dehydrated to the 1 -amino-3-cyanopyrrole in the presence of CCD, ${ }^{2,3 a}$ while the bis-1,4-adduct gives the 3 a carbonylpyrrolo $[2,3-b]$ pyrrole by the double ring closure process. ${ }^{4}$

When the conjugated azoalkenes react with 1-cyanoacetylpiperidine, the simple 1,4 -adduct is initially formed in THF, but attempts to carry out the ring closure under the same conditions as used for the β-cyano ketones failed to provide the 1,2-diamino-3-aminocarbonylpyrroles. Use of NaH in THF led to unacceptably slow reaction, but a solvent mixture of THF and MeOH in the ratio $1: 1$ was found to be more convenient, reproducibly giving the pyrroles in good yields in a few minutes. As was found with the simple cyano ketones, the 1,4-adducts $3 \mathrm{~g}-\mathrm{I}$ readily react with a second azoalkene molecule to give the bis- 1,4 -adducts. Double ring closure to the cyano group leads to the $3 a-a$ minocarbonylpyrrolo $[2,3-b]$ pyrrole derivatives 5. In neither case was cyclization to the amido group observed, according to our previous findings. ${ }^{2}$

Experimental

Amino- and alkoxy-carbonylazoalkenes were prepared as previously reported. ${ }^{6}$ 4,4-Dimethyl-3-oxopentanenitrile, benzoylacetonitrile and 1-cyanoacetylpiperidine were commercial materials (Aldrich) and were used without further purification. M.p.s up to $200^{\circ} \mathrm{C}$ were determined in capillary tubes with a Büchi (Tottoli) apparatus, and above $200^{\circ} \mathrm{C}$ with a Reichert

Scheme 1

Scheme 2
(Kofler) apparatus. M.p.s were uncorrected. The products often decompose at melting point. All IR spectra were obtained for Nujol mulls and were recorded on a Perkin-Elmer 298 spectrophotometer. All ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian EM-360 L (60 MHz) spectrometer, for $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ solutions with SiMe_{4} as internal standard, J values are given in Hz . The abbreviations used are as follows: s , singlet; d , doublet; t, triplet; q, quartet; m, multiplet; br, broad; $\mathrm{D}_{2} \mathrm{O}$-exch., $\mathrm{D}_{2} \mathrm{O}$ exchange. Merck precoated silica gel $60 \mathrm{~F}_{254}$ plates $(0.25 \mathrm{~mm})$ were used for analytical TLC, silica gel PF_{254} plates (2.0 mm) for preparative TLC, and silica gel Kieselgel 60 ($0.063-0.200$ mm) was used for column chromatography. All compounds prepared gave satisfactory elemental analyses ($\mathrm{C} \pm 0.4, \mathrm{H} \pm$ $0.4, \mathrm{~N} \pm 0.3 \%$). Light petroleum refers to the fraction with b.p. $60-80^{\circ} \mathrm{C}$.

Reaction of Azoalkenes 1 with Activated Nitriles 2 in Different Molecular Ratios: General Procedures.-(a) In the molecular ratio $2: 1$. A solution of nitrile $2(1 \mathrm{mmol})$ in tetrahydrofuran (THF) ($2 \mathrm{~cm}^{3}$) was stirred with sodium methoxide (0.1 mmol) for 15 min and added dropwise to a solution of azoalkene 1 (2 $\mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred magnetically at $0^{\circ} \mathrm{C}$ for the appropriate reaction time and was checked by TLC (ethyl acetate-cyclohexane or ethyl acetatemethanol mixtures). In the case of the reactions with benzoyl-
acetonitrile, the pyrrolo[2,3-b]pyrroles 5 crystallized directly from the reaction mixture. In the other cases the products were separated, after evaporation of the solvent under reduced pressure, by chromatography on silica gel column (ethyl acetate-cyclohexane mixtures) and were shown to be products 3 and 5. All the products 3 were crystallized from dichloro-methane-light petroleum, while all the products 5 were crystallized from THF.
(b) In the molecular ratio 1:1. To a stirred solution of the azoalkene $1(1 \mathrm{mmol})$ in THF ($2 \mathrm{~cm}^{3}$) was added dropwise a solution of nitrile $2(1 \mathrm{mmol})$ and sodium methoxide (0.1 mmol) in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was magnetically stirred at $0^{\circ} \mathrm{C}$ until the reaction was complete (TLC: only one spot as major component). In the case of 4,4-dimethyl-3-oxopentanenitrile, the products were purified on a silica gel column (ethyl acetate-cyclohexane mixtures) and identified as the 1,4 -adducts 3. This adduct $\mathbf{3}(1 \mathrm{mmol})$ in a mixture of THF-methanol $1: 1$ was stirred magnetically at room temp. and $\mathrm{CCD}\left(\mathrm{CuCl}_{2}\right.$. $\left.2 \mathrm{H}_{2} \mathrm{O}\right)(0.1 \mathrm{mmol})$ added. The product formed rapidly (monitored by TLC). The reaction mixture was concentrated to a small volume under reduced pressure, mixed with aqueous sulfuric acid (1%) and extracted with ethyl acetate. The organic phase was separated, washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to afford 1 -amino-3cyanopyrrole 4 in satisfactory purity. In the case of

Table 1 Experimental data for the synthesis of 1,4-adducts 3a-f, 1-amino-3-cyanopyrroles 4a-l and pyrrolo[2,3-b]pyrroles 5a-h from conjugated azoalkenes 1a-f and β-cyano ketones 2a-b

Starting materials		R^{1}	R^{2}	R^{3}	Molecular ratio 1:2	Reaction time t / h	Products			Yield (\%) ${ }^{\text {a }}$		
1	2						3	4	5	3	4	5
a	a	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	Bu^{t}	1:1	0.4	a	a	a	90	74	5
a	a	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{Bu}^{\text {t }}$	2:1	2	a		a	7		68
b	a	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Bu}^{t}$	$\mathrm{Bu}^{\text {t }}$	1:1	2.5	b	b	b	87	73	6
b	a	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Bu}^{t}$	$\mathrm{Bu}^{\text {t }}$	2:1	4	b		b	14		65
c	a	$\mathrm{CO}_{2} \mathrm{Me}$	CONH_{2}	$\mathrm{Bu}^{\text {t }}$	1:1	3	c	c	c	58	89	35
c	a	$\mathrm{CO}_{2} \mathrm{Me}$	CONH2	$\mathrm{Bu}^{\text {t }}$	2:1	96	c		c	35		48
d	a	$\mathrm{CO}_{2} \mathrm{Et}$	CONH2	$\mathrm{Bu}^{\text {t }}$	1:1	2	d	d	d	91	81	9
d	a	$\mathrm{CO}_{2} \mathrm{Et}$	CONH_{2}	Bu^{2}	2:1	48	d		d	6		80
e	a	$\mathrm{CO}_{2} \mathrm{Me}$	CONHPh	$\mathrm{Bu}^{\text {t }}$	1:1	2	e	e		81	77	
f	a	$\mathrm{CO}_{2} \mathrm{Et}$	CONHPh	$\mathrm{Bu}^{\text {t }}$	1:1	0.4	f	f		81	77	
a	b	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	Ph	1:1	0.3		g			65	
b	b	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Bu}^{t}$	Ph	1:1	2		h			80	
c	b	$\mathrm{CO}_{2} \mathrm{Me}$	CONH_{2}	Ph	1:1	24		i	e		93	5
c	b	$\mathrm{CO}_{2} \mathrm{Me}$	CONH2	Ph	2:1	4		i	e		5	85
d	b	$\mathrm{CO}_{2} \mathrm{Et}$	CONH_{2}	Ph	1:1	24		,	f		70	18
d	b	$\mathrm{CO}_{2} \mathrm{Et}$	CONH_{2}	Ph	2:1	3		j	f		5	89
e	b	$\mathrm{CO}_{2} \mathrm{Me}$	CONHPh	Ph	1:1	0.3		k	g		82	11
e	b	$\mathrm{CO}_{2} \mathrm{Me}$	CONHPh	Ph	2:1	48		k	g		25	65
f	b	$\mathrm{CO}_{2} \mathrm{Et}$	CONHPh	Ph	1:1	0.4		1	h		66	5
f	b	$\mathrm{CO}_{2} \mathrm{Et}$	CONHPh	Ph	2:1	2		I	h		5	90

${ }^{a}$ Yields calculated with respect to the starting conjugated azoalkenes, except for 1-amino-3-cyanopyrroles 4a-f, which were calculated with respect to the isolated 1,4-adducts 3a-f.

Table 2 Experimental data for the synthesis of 1,2-diaminopyrroles $4 \mathbf{m}-\mathbf{r}$ and pyrrolo[2,3-b]pyrroles 5i-j from conjugated azoalkenes 1a-f and 1cyanoacetylpiperidine $\mathbf{2 c}$

Starting materials		R^{1}	R^{2}	Molecular ratio 1:2	Reaction time, t / h	Products			Yield (\%) ${ }^{\text {a }}$		
1	2					3	4	5	3	4	5
a	c	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Me}$	1:1	0.1	g	m		79	66	
b	c	$\mathrm{CO}_{2} \mathrm{Et}$	$\mathrm{CO}_{2} \mathrm{Bu}^{t}$	1:1	0.1	h	n		80	82	
c	c	$\mathrm{CO}_{2} \mathrm{Me}$	CONH_{2}	1:1	0.1	,	0	i	89	77	10
	c	$\mathrm{CO}_{2} \mathrm{Me}$	CONH2	2:1	3	i		i	7		67
d	c	$\mathrm{CO}_{2} \mathrm{Et}$	CONH_{2}	1:1	0.1	j	p	J	95	75	5
d	c	$\mathrm{CO}_{2} \mathrm{Et}$	CONH_{2}	2:1	48	j		j	32		54
e	c	$\mathrm{CO}_{2} \mathrm{Me}$	CONHPh	1:1	0.1	k	q		90	78	
f	c	$\mathrm{CO}_{2} \mathrm{Et}$	CONHPh	1:1	0.1	,	r		78	82	

${ }^{a}$ Yields calculated with respect to the starting conjugated azoalkenes, except for the 1,2-diaminopyrroles $\mathbf{4 m} \mathbf{- r}$, which were calculated with respect to the isolated 1,4 -adducts $\mathbf{3 g - I}$.
benzoylacetonitrile, when the starting materials disappeared (monitored by TLC), CCD (0.1 mmol) was added to the reaction mixture to afford instantaneously the 1 -amino-3cyanopyrrole as a solid which crystallized directly from THF. In the case of 1 -cyanoacetylpiperidine the products were purified on a silica gel column (ethyl acetate-cyclohexane mixtures) and identified as the 1,4 -adducts. The adduct (1 mmol) was dissolved in a mixture of THF-MeOH (1:1) under magnetic stirring, and a catalytic amount of NaH added to afford rapidly the conversion product. The reaction mixture was concentrated to a small volume under reduced pressure, mixed with aqueous sulfuric acid (1%) and extracted with ethyl acetate. The organic phase was separated, washed with water, dried $\left(\mathbf{M g S O}_{4}\right)$, and concentrated under reduced pressure to give the 1,2 -diaminopyrrole 4 . Use of a $2: 1$ ratio $1: 2$ increased considerably the yields of the pyrrolo[2,3-b]pyrroles. All the

[^0]products 3 were crystallized as above, while the products 4 were crystallized as follows. The following compounds were thus prepared.*

4-Cyano-3-methoxycarbonyl-6,6-dimethylheptane-2,5-dione 2methoxycarbonylhydrazone 3a. M.p. $102-105^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3240,3170,3120,2240,1750,1735,1710$ and $1635 ; \delta_{\mathrm{H}} 1.0(9 \mathrm{H}$, $\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}$), $2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.6\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.0-4.2(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 6.5(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $8.7\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 54.3; $\mathrm{H}, 6.9 ; \mathrm{N}, 13.2 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 54.0 ; \mathrm{H}, 6.8$; $\mathrm{N}, 13.5 \%$).

4-Cyano-3-ethoxycarbonyl-6,6-dimethylheptane-2,5-dione 2-tert-butoxycarbonylhydrazone 3b. M.p. $111-113^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1}$ 3238, 3165, 3115, 2238, 1753, 1737, 1710 and $1630 ; \delta_{\mathrm{H}} 1.0(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, $1.2\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.4\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.0(3 \mathrm{H}, \mathrm{s}$, Me), 3.8-4.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and CH), $6.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $8.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 58.7; H, 7.8; N, 11.3 . $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $58.8 ; \mathrm{H}, 8.0 ; \mathrm{N}, 11.4 \%$).
4-Cyano-3-methoxycarbonyl-6,6-dimethylheptane-2,5-dione 2semicarbazone 3c. M.p. $139-143{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3410,3320$, 3190, 2260, 1680, 1665, 1640, 1615 and 1520; $\delta_{\mathrm{H}} 1.0(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), $2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$,
6.3-6.5 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $8.8(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 52.9; H, 7.2; N, 19.8. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 52.7 ; \mathrm{H}, 6.8$; $\mathrm{N}, 18.9 \%$).
4-Cyano-3-ethoxycarbonyl-6,6-dimethylheptane-2,5-dione 2semicarbazone 3d. M.p. $125-128^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3420,3300$, $3200,2260,1680,1660,1630,1610$ and $1530 ; \delta_{\mathrm{H}} 1.0(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), $1.2\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.7-4.2(3 \mathrm{H}$, m, CH and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 6.1-6.3 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-$ exch.) and $8.6\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 54.1; H, 7.3 ; N, 18.3. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, $54.2 ; \mathrm{H}, 7.2 ; \mathrm{N}, 18.1 \%$).
4-Cyano-3-methoxycarbonyl-6,6-dimethylheptane-2,5-dione 2-phenylsemicarbazone 3e. M.p. $143-145{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3370$, $3210,3100,2220,1730,1710,1595$ and $1535 ; \delta_{\mathrm{H}} 1.5(9 \mathrm{H}, \mathrm{s}$, Bu^{1}), $2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.9\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.1-4.5(1 \mathrm{H}, \mathrm{m}$, CH), $5.3-5.6(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.0-7.8(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.8(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) and 9.8 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 61.0; H, 6.4; $\mathrm{N}, 15.2 . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 15.0 \%$).

4-Cyano-3-ethoxycarbonyl-6,6-dimethylheptane-2,5-dione 2phenylsemicarbazone 3f. M.p. $152-155^{\circ} \mathrm{C}$; $\nu_{\max } / \mathrm{cm}^{-1} 3370$, $3200,3100,2220,1720,1680,1595$ and 1535 ; $\delta_{\mathrm{H}} 1.0-1.3(12 \mathrm{H}$, $\mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and Bu^{t}), $2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.9-4.3(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and CH$)$, $5.1-5.3(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.8-7.7(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 8.7\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch. $)$ and $9.8\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 62.6; H, 6.6; $\mathrm{N}, 14.7 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 62.2; H, 6.8; N, 14.5\%)
Methyl 5-tert-butyl-4-cyano-1-methoxycarbonylamino-2-methylpyrrole-3-carboxylate 4a. M.p. $192-195^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ 3260, 2220, 1755, 1710, 1685 and 1590; $\delta_{\mathrm{H}} 1.4\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.1$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.7\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $11.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 57.6; H, 6.3; N, 14.6. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $57.3 ; \mathrm{H}, 6.5$; N, 14.3%).
Ethyl 1-(tert-butoxycarbonylamino)-5-tert-butyl-4-cyano-2-methylpyrrole-3-carboxylate 4b. M.p. $203-205^{\circ} \mathrm{C} ; \nu_{\max } / \mathrm{cm}^{-1}$ $3270,2220,1750,1710,1685$ and $1590 ; \delta_{\mathrm{H}} 1.2-1.5(21 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and Bu^{t}), $2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.2(2 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$) and $10.6\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 62.1; $\mathrm{H}, 7.7 ; \mathrm{N}, 11.8 . \mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.9 ; \mathrm{H}, 7.8 ; \mathrm{N}, 12.0 \%$).

Methyl 5-tert-butyl-4-cyano-2-methyl-1-ureidopyrrole-3-carboxylate 4c. M.p. $230-234{ }^{\circ} \mathrm{C}$ (from methanol); $v_{\text {max }} / \mathrm{cm}^{-1}$ 3380, 3240, 3170, 2225, 1690 overlap and 1580; $\delta_{\mathrm{H}} 1.4(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), $2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.7\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 6.4\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.) and 9.4 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 55.9 ; $\mathrm{H}, 6.4 ; \mathrm{N}, 20.2 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 56.1 ; \mathrm{H}, 6.5 ; \mathrm{N}, 20.1 \%$).
Ethyl 5-tert-butyl-4-cyano-2-methyl-1-ureidopyrrole-3-carboxylate 4d. M.p. 228-233 ${ }^{\circ} \mathrm{C}$ (from methanol); $v_{\text {max }} / \mathrm{cm}^{-1} 3430$, $3250,3190,2225,1690$ overlap and $1580 ; \delta_{\mathrm{H}} 1.2(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.4\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.1(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.1(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.1(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 57.7; H, 6.8; N, 18.9. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.5 ; \mathrm{H}, 6.9$; $\mathrm{N}, 19.2 \%$).
Methyl 5-tert-butyl-4-cyano-2-methyl-(N^{\prime}-phenylureido) pyr-role-3-carboxylate 4e. M.p. 179-181 ${ }^{\circ} \mathrm{C}$ (from methanol); $v_{\text {max }} / \mathrm{cm}^{-1} 3310,3150,3090,2220,1730,1690,1610$ and $1550 ;$ $\delta_{\mathrm{H}} 1.4\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 6.7-$ $7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}\right.$.) and $9.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 64.8; H, 6.0; N, 15.7. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.4 ; \mathrm{H}, 6.3 ; \mathrm{N}, 15.8 \%$).

Ethyl 5-tert-butyl-4-cyano-2-methyl-1-(N'-phenylureido)pyr-role-3-carboxylate 4f. M.p. $228-232^{\circ} \mathrm{C}$ (from methanol); $v_{\text {max }} / \mathrm{cm}^{-1} 3310,3150,3100,2220,1730,1680,1610$ and $1550 ;$ $\delta_{\mathrm{H}} 1.3\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.5\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.3(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 4.2\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 6.9-7.6(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.4(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $9.6\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 65.0; H, 6.2; $\mathrm{N}, 14.9 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 65.2; H, 6.6; N , 15.2%).
Methyl 4-cyano-1-methoxycarbonylamino-2-methyl-5-phenyl-pyrrole-3-carboxylate 4 g. M.p. $175-177^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }} / \mathrm{cm}^{-1} 3315,2225,1755,1700,1575$ and $1545 ; \delta_{\mathrm{H}}$
$2.4(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.6 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 3.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 7.5 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$) and 11.1 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 61.2; $\mathrm{H}, 4.7 ; \mathrm{N}, 13.6 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.3 ; \mathrm{H}, 4.8 ; \mathrm{N}, 13.4 \%$).
Ethyl 1-(tert-butoxycarbonylamino)-4-cyano-2-methyl-5-phenylpyrrole-3-carboxylate 4h. M.p. 193-196 ${ }^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\max } / \mathrm{cm}^{-1} 3280,2225,1750,1710,1680,1570$ and 1550; δ_{H} 1.1-1.4 ($12 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and Bu^{t}), $2.4(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 4.3\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 7.5(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and 10.7 (1 H, s, NH, D ${ }_{2}$ O-exch.) (Found: C, 65.2; H, 6.6; N, 11.6. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 6.3 ; \mathrm{N}, 11.4 \%$).
Methyl 4-cyano-2-methyl-5-phenyl-1-ureidopyrrole-3-carboxylate 4i. M.p. $242-245^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\max } / \mathrm{cm}^{-1}$ $3425,3320,3245,3195,2225,1725,1675,1575$ and $1535 ; \delta_{\mathrm{H}}$ 2.3 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.7 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.), 7.3 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$) and 9.2 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 60.5; H, 4.2; $\mathrm{N}, 19.0 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 60.4; $\mathrm{H}, 4.7 ; \mathrm{N}$, 18.8%).
Ethyl 4-cyano-2-methyl-5-phenyl-1-ureidopyrrole-3-carboxylate 4 j . M.p. $270-273{ }^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3425,3320,3250,3200,2225,1720,1680,1575$ and $1540 ; \delta_{\mathrm{H}}$ 1.2 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.3(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.1(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $7.3(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $9.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 61.7; H, 5.0; N, 17.7. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.5 ; \mathrm{H}, 5.2 ; \mathrm{N}, 17.9 \%$).
Methyl 4-cyano-2-methyl-5-phenyl-1-(N^{\prime}-phenylureido)pyr-role-3-carboxylate $\mathbf{4 k}$. M.p. $230-234{ }^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }} / \mathrm{cm}^{-1} 3340,3295,2225,1715,1695,1600$ and $1540 ; \delta_{\mathrm{H}}$ 2.3 ($\mathbf{3} \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.7 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 6.6-7.2 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.3 ($5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 9.1\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.4(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 67.8; H, 4.7; N, 15.3. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $67.4 ; \mathrm{H}, 4.9 ; \mathrm{N}, 15.0 \%$)
Ethyl 4-cyano-2-methyl-5-phenyl-1-(N^{\prime}-phenylureido)pyrrole-3-carboxylate 41. M.p. $221-225^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\max } / \mathrm{cm}^{-1} 3340,3320,2225,1720,1690,1610$ and $1550 ; \delta_{\mathrm{H}}$ 1.3 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 2.4 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.2 ($2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 6.7-7.6(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.3\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and 9.7 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 67.8; H, 5.1; N, 14.7. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $68.0 ; \mathrm{H}, 5.2 ; \mathrm{N}, 14.4 \%$).

Dimethyl 6a-amino-1,6-bis-(methoxycarbonylamino)-2,5-di-methyl-3a-trimethylacetyl-1,3a,6,6a-tetrahydropyrrolo[2,3-b]-pyrrole-3,4-dicarboxylate 5a. M.p. $138-140^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3240$, 3160, 3120, 1760, 1710 and 1640; $\delta_{\mathrm{H}} 1.5\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.1(6 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 3.7-3.9$ ($12 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{Me}$), 4.0 and $4.4\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.) and 10.1 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}$.) (Found: C, 50.8 ; $\mathrm{H}, 6.1 ; \mathrm{N}, 14.3 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires $\mathrm{C}, 50.7 ; \mathrm{H}, 6.3 ; \mathrm{N}, 14.1 \%$)

Diethyl 6a-amino-1,6-bis-(tert-butoxycarbonylamino)-2,5-di-methyl-3a-trimethylacetyl-1,3a,6,6a-tetrahydropyrrolo[2,3-b]-pyrrole-3,4-dicarboxylate 5b. M.p. 103-105 ${ }^{\circ} \mathrm{C}$; $\boldsymbol{v}_{\max } / \mathrm{cm}^{-1} 3240$, $3160,3120,1755,1690$ and $1620 ; \delta_{\mathrm{H}} 1.0-1.5(33 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and Bu^{t}), $1.8(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.5-4.2(6 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $9.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 56.8; H, 7.9; N, 11.6. $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{9}$ requires C, 57.1; H, 7.8; N, 11.5\%).

Dimethyl 6a-amino-2,5-dimethyl-3a-trimethylacetyl-1,6-diure-ido-1,3a,6,6a-tetrahydropyrrolo[2,3,b] pyrrole-3,4-dicarboxylate 5c. M.p. ${ }^{165-169}{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3480,3450,3200,1755,1745$, 1700,1670 and $1580 ; \delta_{\mathrm{H}} 1.2\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.8(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.5$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.9$ and $4.2\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.), 6.3 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), 6.4 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$, $\mathrm{D}_{2} \mathrm{O}$-exch.), 9.3 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $9.6(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 48.5; H, 6.7; N, 21.1. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires C, $48.8 ; \mathrm{H}, 6.3 ; \mathrm{N}, 21.0 \%$)

Diethyl 6a-amino-2,5-dimethyl-3a-trimethylacetyl-1,6-diurei-do-1,3a,6,6a-tetrahydropyrrolo[2,3-b] pyrrole-3,4-dicarboxylate 5d. M.p. $182-184{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3520,3460,3200,1745,1695$, 1640 and 1580; $\delta_{\mathrm{H}} 0.9-1.3\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ and Bu^{t}), 1.8 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.8-4.2$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-$ exch.), $6.1\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$
exch.), 9.1 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $9.3\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, $50.7 ; \mathrm{H}, 7.0 ; \mathrm{N}, 19.7 . \mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires C, 50.9; H, 6.7; N, 19.8\%).
Dimethyl 6a-amino-3a-benzoyl-2,5-dimethyl-1,6-diureido-1,-3a,6,6a-tetrahydropyrrolo[2,3-b] pyrrole-3,4-dicarboxylate $\mathbf{5 e}$. M.p. $180-182^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3475,3380,3300,3190,1750,1690$ and 1580 ; $\delta_{\mathrm{H}} 1.6(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.4(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me}$), 3.5 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), 3.9 and $4.3\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.), $5.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.), $7.0-7.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}.\right)$ and 9.1 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 51.9; H, 4.8; N, 19.9. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires C, 51.7; H, 5.2; $\mathrm{N}, 20.1 \%$).
Diethyl 6a-amino-3a-benzoyl-2,5-dimethyl-1,6-diureido-1,3a,-6,6a-tetrahydropyrrolo [2,3-b] pyrrole-3,4-dicarboxylate 5f. M.p. $180-183{ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3475,3400,3310,3190,1740,1690$ and $1580 ; \delta_{\mathrm{H}} 0.8-1.3\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.6 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 1.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.4-4.3 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-$ exch.), 5.7 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.), $7.0-7.9(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}.\right)$ and 9.1 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}\right.$.) (Found: C, 52.1; H, 5.5; N, 19.9. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires $\mathrm{C}, 51.7 ; \mathrm{H}, 5.2 ; \mathrm{N}, 20.1 \%$).

Dimethyl 6a-amino-3a-benzoyl-2,5-dimethyl-1,6-bis-(N^{\prime}-phen-y(ureido)-1,3a,6,6a-tetrahydropyrrolo[2,3-b] pyrrole-3,4-dicarboxylate 5g. M.p. $178-181^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 3340,3200,3100$, 1745,1690 and 1595 ; $\delta_{\mathrm{H}} 1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $1.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.3$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.2$ and $4.6\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.), 6.6-7.9 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 8.5 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.), $8.7\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $9.5\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and 9.7 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 61.7; H, 5.1; N, 15.1. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires C, $62.0 ; \mathrm{H}, 5.2 ; \mathrm{N}, 15.3 \%$).

Diethyl 6a-amino-3a-benzoyl-2,5-dimethyl-1,6-bis-(N^{\prime}-phenyl-ureido)-1,3a,6,6a-tetrahydropyrrolo[2,3-b] pyrrole-3,4-dicarboxylate 5h. M.p. $196-198{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3345,3315,3205,3100$, $1750,1740,1680$ and $1595 ; \delta_{\mathrm{H}} 0.8-1.3\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.8$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.7-4.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), 4.3 and $4.7\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $6.8-8.0(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.8(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}$.), $9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}.\right), 9.7(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) and 9.9 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}$.) (Found: C, 63.0; H, $5.8 ; \mathrm{N}, 14.6 . \mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{7}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 5.6 ; \mathrm{N}, 14.7 \%$).
4-Cyano-2-methoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2-one methoxycarbonylhydrazone 3g. M.p. $141-144{ }^{\circ} \mathrm{C}$; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3230,3180,2220,1747,1730$ and $1650 ; \delta_{\mathrm{H}} 1.2-1.7(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Pip})$, $1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, , 3.2-3.7 ($7 \mathrm{H}, \mathrm{m}$, Pip and $\mathrm{CO}_{2} \mathrm{Me}$), 3.8 $(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 4.5(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH})$ and $9.8(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 53.6; H, 6.8; N, 16.4. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 53.3 ; \mathrm{H}, 6.6 ; \mathrm{N}, 16.6 \%)$.
4-Cyano-2-ethoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2one tert-butoxycarbonylhydrazone 3h. M.p $158-159^{\circ} \mathrm{C}$; $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3245,3175,2245,1740,1720$ and $1650 ; \delta_{\mathrm{H}} 1.2(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 1.3-1.7 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{t}$ and Pip), $1.8(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.2-3.5 ($4 \mathrm{H}, \mathrm{m}, \operatorname{Pip}), 3.7(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 4.0(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.5(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH})$ and $9.4\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 57.7; H, 7.4; N, 13.9. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires C, 57.9 H, 7.7 ; N, 14.2\%).
4-Cyano-2-methoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2-one semicarbazone 3i. M.p. $175-176{ }^{\circ} \mathrm{C} ; \nu_{\max } / \mathrm{cm}^{-1} 3500$, $3380,3190,2245,1735,1725,1685,1655$ and $1580 ; \delta_{\mathrm{H}} 1.3-1.6$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), 1.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.2-3.6 ($7 \mathrm{H}, \mathrm{m}$, Pip and $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 3.8(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 4.8(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 6.2(2$ $\mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and 9.0 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 52.3; $\mathrm{H}, 6.4 ; \mathrm{N}, 21.6 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 52.0$; H, 6.6; N, 21.7\%).

4-Cyano-2-ethoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2one semicarbazone 3j. M.p. $170-171{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3445,3290$, $3180,2240,1740,1725,1695,1635$ and $1590 ; \delta_{\mathrm{H}} 1.1(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 1.3-1.6 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), 1.8 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.3-4.1$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Pip}, \mathrm{CH}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $4.8(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 6.2$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.)
(Found: C, 53.2; H, 6.8; N, 21.1. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C , 53.4; H, 6.9; N, 20.8\%).

4-Cyano-2-methoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2-one 4-phenylsemicarbazone 3k. M.p. $164-167^{\circ} \mathrm{C}$; $\boldsymbol{v}_{\text {max }} / \mathrm{cm}^{-1}$ $3360,3200,2220,1740,1685,1655$ and $1595 ; \delta_{\mathrm{H}} 1.2-1.7(6 \mathrm{H}$, $\mathrm{m}, \mathrm{Pip})$, $1.9(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.2-3.6 ($7 \mathrm{H}, \mathrm{m}$, Pip and $\mathrm{CO}_{2} \mathrm{Me}$), 4.0 $(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 4.9(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 6.7-7.6(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $8.5\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.5\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: 59.8; $\mathrm{H}, 6.5 ; \mathrm{N}, 17.2 \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.1$; H, 6.3; N, 17.5\%).

4-Cyano-2-ethoxycarbonyl-3-piperidin-1-ylcarbonylbutan-2one phenylsemicarbazone 31. M.p. $187-191^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3345,3200,2230,1735,1685,1655$ and $1595 ; \delta_{\mathrm{H}} 1.1(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.2-1.7(6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.0(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.3-4.3$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Pip}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$, and CH), $5.1(1 \mathrm{H}, \mathrm{d}, J 10, \mathrm{CH}), 6.8-$ $7.7(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.7\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.8(1 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 61.3; H, 6.3; N, 17.1. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.0 ; \mathrm{H}, 6.6 ; \mathrm{N}, 16.9 \%$).

Methyl 5-amino-1-methoxycarbonylamino-2-methyl-4-piperi-din-1-ylcarbonylpyrrole-3-carboxylate 4m. M.p. 202-204 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3385,3300,3180,1750,1700$, 1640 and $1610 ; \delta_{\mathrm{H}} 1.3-1.6(6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.1$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.2$3.5(4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 3.6\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) and $10.5\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: $\mathrm{C}, 53.6 ; \mathrm{H}, 6.4$; $\mathrm{N}, 16.9 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires C, $53.3 ; \mathrm{H}, 6.6 ; \mathrm{N}, 16.6 \%$).

Ethyl 5-amino-1-tert-butoxycarbonylamino-2-methyl-4-piper-idin-1-ylcarbonylpyrrole-3-carboxylate 4n. M.p. $254-257^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3440,3390,3310,3140,1720$, 1700,1620 and $1595 ; \delta_{\mathrm{H}} 1.1\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.3-1.5$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{t}$ and Pip), 2.1 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.3-3.5 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), 4.2 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $4.6\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and 9.7 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 58.3; H, 7.6; N, 14.5. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.9 ; \mathrm{H}, 7.7 ; \mathrm{N}, 14.2 \%$).

Methyl 5-amino-2-methyl-4-piperidin-1-ylcarbonyl-1-ureido-pyrrole-3-carboxylate $\mathbf{4 0}$. M.p. $218-220^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3420,3330,3180,1715,1685,1625,1590$ and 1565 ; $\delta_{\mathrm{H}} 1.3-1.6(6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.2-3.5(4 \mathrm{H}, \mathrm{m}, \mathrm{Pip})$, $3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.5\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $6.2(2 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $8.9\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 52.1; $\mathrm{H}, 6.9$; $\mathrm{N}, 21.6 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, $52.0 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 21.7%).

Ethyl 5-amino-2-methyl-4-piperidin-1-ylcarbonyl-1-ureidopyr-role-3-carboxylate 4p. M.p. 185-188 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\max } / \mathrm{cm}^{-1} 3425,3320,3210,1700,1620,1595$ and $1560 ; \delta_{\mathrm{H}}$ $1.2\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.3-1.7(6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.2(3 \mathrm{H}, \mathrm{s}$, Me), 3.2-3.5 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), $4.0\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.5$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and 8.9 $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, $53.6 ; \mathrm{H}, 6.6 ; \mathrm{N}, 20.7$. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, $53.4 ; \mathrm{H}, 6.9 ; \mathrm{N}, 20.8 \%$).

Methyl 5-amino-2-methyl-4-piperidin-1-ylcarbonyl-1-(N^{\prime} phenylureido) pyrrole-3-carboxylate 4q. M.p. $172-174{ }^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3280,3200,3140,3100,1710,1625$, 1605, 1580 and $1560 ; \delta_{\mathrm{H}} 1.3-1.6(6 \mathrm{H}, \mathrm{m}, \operatorname{Pip}), 2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.2-3.5 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), $3.6\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $4.7\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.), 6.8-7.6 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.2\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) (Found: C, 60.0; H, 6.5; N, 17.4. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, $60.1 ; \mathrm{H}, 6.3 ; \mathrm{N}, 17.5 \%$).

Ethyl 5-amino-2-methyl-4-piperidin-1-ylcarbonyl-1-(N^{\prime}-phenylureido) pyrrole-3-carboxylate 4r. M.p. 139-142 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate); $v_{\text {max }} / \mathrm{cm}^{-1} 3275,3200,3140,3090,1695,1615,1585$ and $1550 ; \delta_{\mathrm{H}} 1.2\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.3-1.6(6 \mathrm{H}, \mathrm{m}$, Pip), 2.2 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.2-3.5(4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 4.0(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 4.6\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.), $6.8-7.6(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.1\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) (Found: C, 61.3; H, 6.3; N, 16.7. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, 61.0; H, 6.6; N, 16.9%).

Dimethyl 6a-amino-2,5-dimethyl-3a-piperidin-1-ylcarbonyl-1,-6-diureido-1,3a,6,6a-tetrahydropyrrolo [2,3-b] pyrrole-3,4-dicar-
boxylate 5i. M.p. $185-189{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3475,3300,1745$, 1640, 1632 and $1580 ; \delta_{\mathrm{H}}$ 1.3-1.9 ($12 \mathrm{H}, \mathrm{m}$, Pip and Me), 3.2$3.7\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Pip}\right.$ and $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$, 3.9 and $4.2\left(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.), 6.0 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), $6.2\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$, $\mathrm{D}_{2} \mathrm{O}$-exch.), $9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.2(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$, $\mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, 48.3; H, 6.0; N, 22.9. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{8} \mathrm{O}_{7}$ requires $\mathrm{C}, 48.6 ; \mathrm{H}, 6.1 ; \mathrm{N}, 22.7 \%$).

Diethyl 6a-amino-2,5-dimethyl-3a-piperidin-1-ylcarbonyl-1,6-diureido-1,3a,6,6a-tetrahydropyrrolo[2,3-b] pyrrole-3,4-dicarboxylate 5 j. M.p. $168-170^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3480,3330,3180$, $1745,1685,1645$ and $1580 ; \delta_{\mathrm{H}} 0.9-1.2\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 1.3-1.6 ($6 \mathrm{H}, \mathrm{m}$, Pip), 1.8 ($6 \mathrm{H}, \mathrm{s}$, Me), 3.2-4.3 ($10 \mathrm{H}, \mathrm{m}$, Pip, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ and $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), $6.1\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.), 6.2 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}$.), $9.0\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\right.$ exch.) and 9.2 ($\left.1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exch}.\right)$ (Found: C, $50.4 ;$ $\mathrm{H}, 6.3 ; \mathrm{N}, 21.3 . \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{7}$ requires $\mathrm{C}, 50.6 ; \mathrm{H}, 6.6 ; \mathrm{N}$, 21.4%).

Acknowledgements

This work was supported by the financial assistance from Ministero dell'Università e della Ricerca Scientifica e

Tecnologica (MURST-Roma), Consiglio Nazionale delle Richerche (CNR-Roma), and Regione Marche (Ancona).

References

1 Part 11. O. Attanasi, P. Filippone and A. Mei, Tetrahedron, submitted for publication.
2 For a review see: O. Attanasi and L. Caglioti, Org. Prep. Proced. Int., 1986, 18, 299 and refs. cited therein.
3 (a) O. Attanasi, M. Grossi, F. Serra-Zanetti and E. Foresti, Tetrahedron, 1987, 43, 4249; (b) O. Attanasi, S. Santeusanio and F. Serra-Zanetti, Gazz. Chim. Ital., 1989, 119, 631.
4 O. Attanasi, S. Santeusanio, F. Serra-Zanetti, E. Foresti and A. McKillop, J. Chem. Soc., Perkin Trans. I, 1990, 1669.
5 Heterocyclic Chemistry, vols. 1-5, eds. H. Suschitzky and O. MethCohn, Royal Society of Chemistry, London, 1978-1986; Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon, London, 1984, and refs. cited therein.
6 O. Attanasi, P. Filippone, A. Mei and S. Santeusanio, Synthesis, 1984, 671; 1984, 873.

Paper 1/06256E
Received 12th December 1991
Accepted 29th January 1992

[^0]: * Tests on the anticancer and anti-AIDS activities of some of these compounds are performed under the auspices of the Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland, USA.

